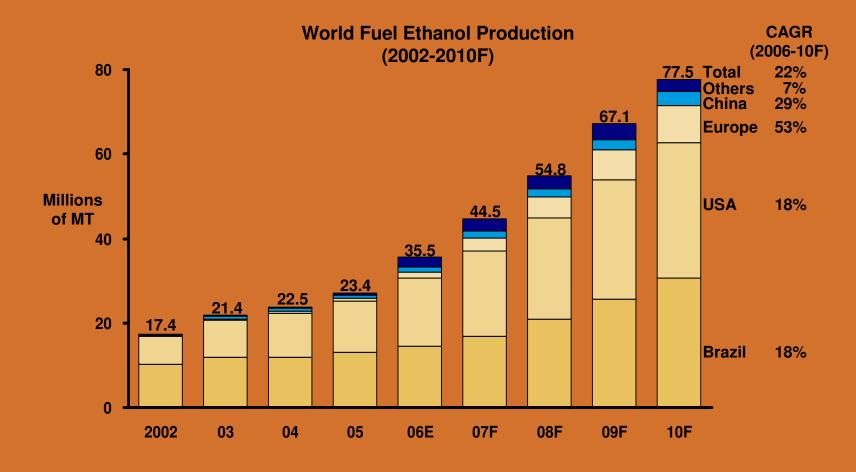


Enzyme use for corn fuel ethanol production

Luis Alessandro Volpato Mereles

July 12th, 2007



- Global Biofuel Outlook
- Novozymes at a glance
- What are enzymes
- Using Enzymes to produce Fuel Ethanol from Grains

Growing Demand

Global fuel ethanol production has doubled in the past 5 years, and will continue to grow at 20% plus annually through 2010

Slide No. 3

World leader in industrial enzymes

- Leading-edge biotechnology expertise
 - 600+ products in 40 different industries
 - More than 5,000 patents granted and pending
- Commitment to innovation
 - 13% of sales reinvested in R&D
 - Products launched within the last 5 years account for 30% of turnover

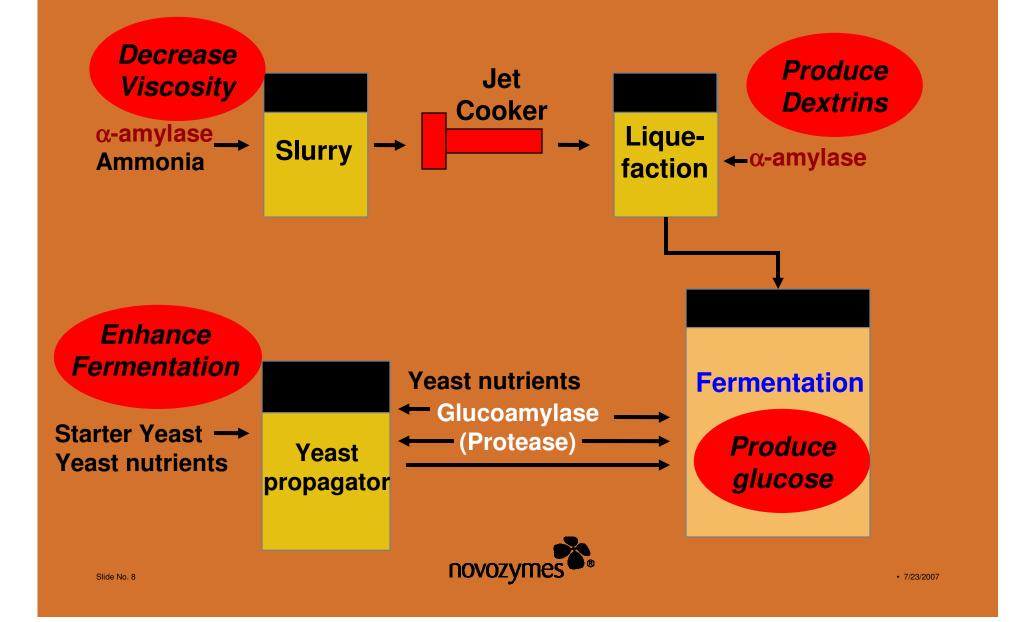
We find the magic of nature in a handful of soil or a compost heap. Then we turn it into solutions for fuel ethanol and other applications.

Our commitment to the Ethanol Industry begins with our global efforts and focus

Sales Offices

Production

Research


• 7/23/2007

Enzymes Are:

- Functional proteins (as opposed to structural); catalysts
- Primarily made up of chains of amino acids linked together by peptide bonds.
- Found in all living organisms
- Safe, however, good chemical hygiene is always recommended.
 - Work under mild conditions
 - Replace harsh chemicals such as strong acids
 - Biologically degradable
 - ✓ A "clean technology"

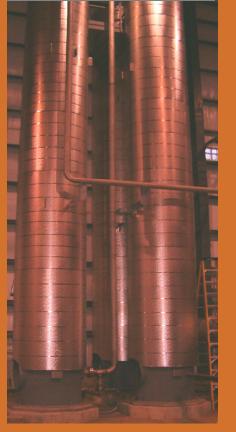
Why & Where Enzymes are Added

Liquefaction

"The cook process"

Liquefaction

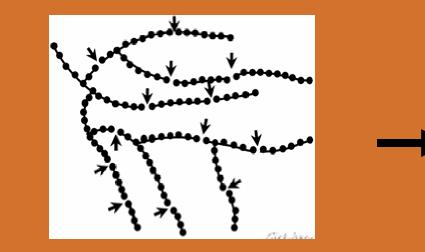
- Converts large chain amylose and amylopectin to a mixture of smaller chain length dextrins
- DE generation
 (Final DE Target 10-12)

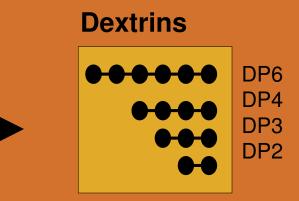


Tube & Shell Heat Exchanger

- Decreases viscosity
- Lower viscosity increases heat exchanger efficiency and makes the mash easier to pump

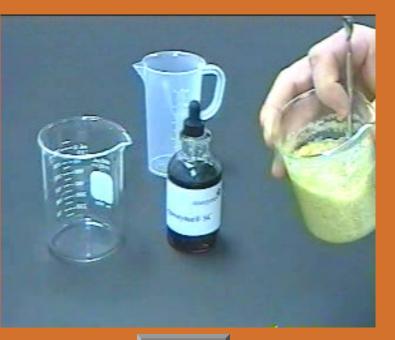
Cook Tubes


Smoother Operations using Liquozyme[®] SC DS


- State of the art enzyme for liquefaction (protein-engineered B. stearothermophilis)
- Smooth your production with the highest tolerance for process variations
 - Superior thermostability and pH tolerance maintains performance in fluxuating conditions
 - Viscosity reducing properties excellent over a wide pH range (up to pH 6.2)
 - The choice of over more than ³/₄'s of all operating ethanol plants
- No impact on production from calcium deficiencies or mash variances
 - Conventional alpha-amylases suffer reduced performance due to weak
 thermostability and calcium dependency
 - No "band-aids" required to compensate for stability issues

Liquefaction & Cook

Liquozyme[®] SC DS randomly cleaves large chain amylose and • amylopectin to a mixture of smaller chain-length dextrins



GOALS:

- DE Generation with final target of **10-12**
- Further viscosity reduction novozymes

Viscosity Reduction - Demo

- Mixed Corn Mash + Boiling Water
- Note Viscosity from starch gelatinization
- Add 1 drop Liquozyme[®]SC DS
- Ensure good agitation
- Note rapid viscosity break

Operating Conditions For Single Dose Dry Mill Liquefaction Using Liquozyme SC DS

Free Calcium Typical pH Range

Slurry Hold Temperature Slurry Hold Time

Liq Hold Temperature Liq Hold Time

Total Enzyme Dose

*Generally present in water and grain

Typical

>5ppm* 5.6 – 6.0

83 - 85 ℃ 30 - 60 min

83 - 85 ℃ 90 - 150 min

0.0155- 0.031%w/w

SSF Simultaneous Saccharifaction & Fermentation

"Yeast Nutrition and Production of Alcohol"

7/23/2007

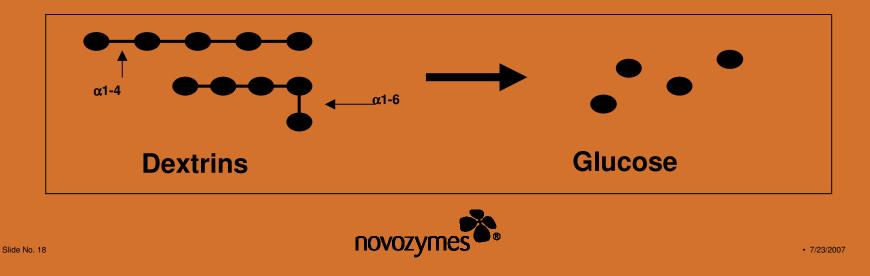
SSF – Simultaneous Saccharification and Fermentation

Spirizyme® Fuel gluco-amylase generates fermentable sugars in the fermentor at the same time as the yeast is converting the sugar to ethanol.

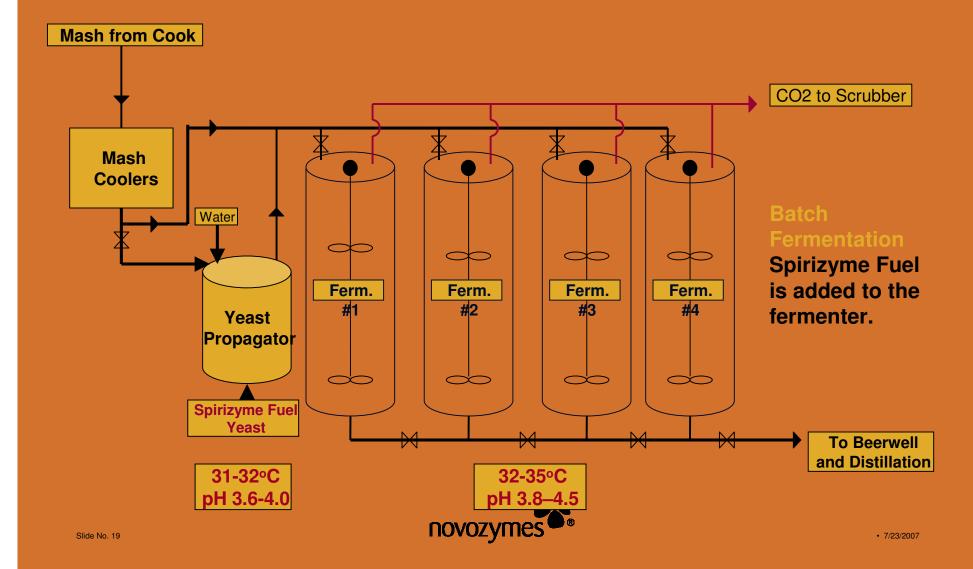
Spirizyme[®] Fuel ensures maximum ethanol production

- Higher performance than traditional glucoamylasesQuicker glucose production

 - Lower maltose levels
 - Lower DP3 levels
- Concentrated formulation
 - Reduced volume of enzyme dosage by 20 30%
 - Less ordering and handling
- Greater thermostability
 - Robust performance in temperature ranging from 32 ℃ to 70 ℃
 - Reduced rate of infection in saccharification step
- Proven performance
 - The most widely used glucoamylase in the world for fuel ethanol production
 - The leading choice for new plants since its introduction

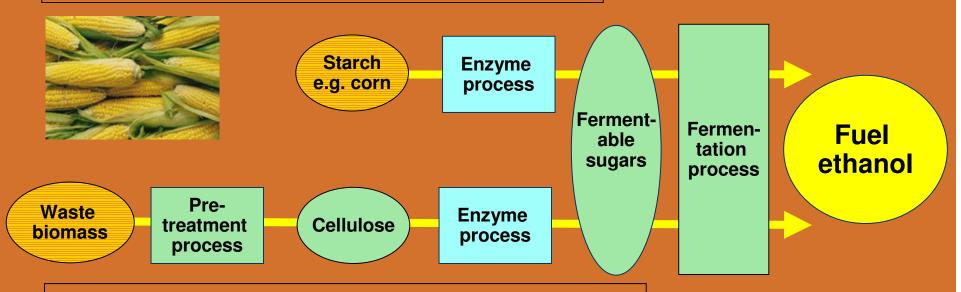


Gluco-amylase: Spirizyme[®] Fuel


Application

Hydrolyzes 1,4 and 1,6-alpha linkages in liquefied starch. During hydrolysis, the amylo-glucosidase activity removes glucose units in a stepwise manner from the non-reducing end of the substrate molecule.

*Note: 1,4-alpha linkages are more readily hydrolyzed!


SSF Process Flow

	1 Bushel of Corn (56 lbs)
Corn = 56 lbs (25.4 kg)	
Starch = 33.8 lbs (15.3 kg)	
Sugar = 37.5 lbs (17 kg)	
Ethanol = 17.9 lbs (2.71 gal ~ 10.27 l)	
Approx. a 1:1:1 ratio	CO ₂ = 17.1 lbs (7.8 kg)
EtOH:CO ₂ :DDGS	DDGS = 16.2 lbs (7.3 kg)
%Efficiency = <u>actual alcohol wt</u> > theoretical alcohol wt	Heat 6.5 MJ
Slide No. 20	NOVOZYMES • 7/23/2007

Simplified bio-ethanol production processes

1st generation corn-based ethanol production

novozyme

Future 2nd generation biomass-based ethanol production

For more information please access

www.novozymes.com

www.biomass.novozymes.com

Thanks for your attention!

